Telegram Group & Telegram Channel
Почему модель, обученная с L1-регуляризацией, может приводить к более интерпретируемым результатам по сравнению с L2-регуляризацией?

🔹 L1-регуляризация (Lasso) добавляет к функции потерь сумму модулей весов, что способствует обнулению некоторых из них. Это приводит к разреженности модели — многие параметры становятся нулевыми, оставляя только значимые признаки. В результате модель становится проще и легче интерпретируется.

🔹 L2-регуляризация (Ridge) добавляет сумму квадратов весов, но не зануляет их, а только уменьшает. Это делает модель более устойчивой к шуму, но не позволяет выявить наименее значимые признаки.

📌 L1-регуляризация действует как механизм автоматического отбора признаков, что упрощает интерпретацию модели. L2, в свою очередь, помогает сглаживать веса, но не делает модель разреженной.



tg-me.com/ds_interview_lib/818
Create:
Last Update:

Почему модель, обученная с L1-регуляризацией, может приводить к более интерпретируемым результатам по сравнению с L2-регуляризацией?

🔹 L1-регуляризация (Lasso) добавляет к функции потерь сумму модулей весов, что способствует обнулению некоторых из них. Это приводит к разреженности модели — многие параметры становятся нулевыми, оставляя только значимые признаки. В результате модель становится проще и легче интерпретируется.

🔹 L2-регуляризация (Ridge) добавляет сумму квадратов весов, но не зануляет их, а только уменьшает. Это делает модель более устойчивой к шуму, но не позволяет выявить наименее значимые признаки.

📌 L1-регуляризация действует как механизм автоматического отбора признаков, что упрощает интерпретацию модели. L2, в свою очередь, помогает сглаживать веса, но не делает модель разреженной.

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/818

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA